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Abstract  

With the help of two specialized embedded RISC processors, the authors of this research report on the creation of a fully automated 

embedded video surveillance system. The software is broken up into many modules, such as those responsible for object tracking and 

video stream encoding. Using video footage captured by fixed cameras, the real-time object tracker can identify and follow relocating 

items in a scene. The block-matching algorithm serves as its foundation. Optimizing an ITU-T H.263 baseline video encoder for quarter 

common intermediate format (QCIF) and common intermediate format (CIF) resolutions is part of the process of encoding the video 

stream. The automated video surveillance system was realized by the integration of two separate subsystems, each using one of the two 

processing cores. The experimental results demonstrate the system's potential for real-time object detection, tracking, and encoding in 

pictures of QCIF and CIF resolutions. The system's low cycle count, low number of transistors, and low power consumption make it 

well-suited for use in outlying areas. 

INTRODUCTION  

Thanks to recent advancements in computer technology, fully automated video monitoring in real time is now a 

reality. The use of automated video surveillance allows for the monitoring of expansive spaces with complicated 

sceneries, increases the likelihood of detecting a particular occurrence, and simultaneously reduces the amount 

of data supplied to security personnel. A system like this would include a video compression part as well as an 

object detection/tracking part. Automated video surveillance systems begin with the identification of moving 

objects inside the field of view of a video camera, and the findings of this detection are then utilized for further 

processing, such as object tracking. Captured scenes may be stored more easily and sent over a less bandwidth 

thanks to video compression. The difference approach and block-matching algorithms are only two examples of 

the real-time tracking techniques used in [1]. To the best of our knowledge, no performance statistic is known 

for the hardware-implemented object tracker, despite the fact that a parallel hardware implementation of the 

tracking algorithm is described in [2].  

The processing demands of video compression mean that it is still a difficult issue to solve, particularly for real-

time embedded devices. Different strategies using hardware accelerators, parallel processing, and programmable 

CPUs have been suggested to fulfil these computing needs. There have been several reports of real-time 

H.263/MPEG-4 video  

 

encoder implementations. Using several TMS320C6201 DSPs, the authors of [3] were able to encode CIF (352 

288) images at a real-time frame rate of 30 fps. Due to both fine-grained and coarse-grained parallelism, 

H.263/MPEG-4 is well-suited for parallel processing. High encoding performance may be achieved with the 

help of hardware acceleration units, as stated in [4, 5], although hardware is less versatile and not well suited for 

rapid updates. Using the same RISC embedded processor as we use, recent work by [6] has accomplished real-

time MPEG-4 video encoding of the 15 fps QCIF size pictures needing 65.7 Cycles. Our video encoder can 

encode CIF pictures at 15 frames per second with a lower cycle count than QCIF can, but this comes at the 

expense of more hardware. Because of its lower power requirements, it is more suited for low-power uses. 

TELEVISION MONITORING THAT DOES ITSELF  

In this part, we detail the video compression algorithms we utilized, the object identification and tracking 

methods we implemented, and the design choices that went into our surveillance system. 

 Detecting and following objects. 

 Both background subtraction (which compares each new frame with a representation of the scene backdrop) 

and block-matching algorithms (which compare each new frame with the previous frame) may be used to detect 

moving objects in video sequences. The next step is to use object tracking to follow the path of a moving item in 

a movie. backdrop model techniques avoid being fooled by static textures, but they can't pick up on foreground 

items that have a comparable intensity level with the backdrop. Background modelling strategies fall into either 
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the no recursive or recursive camps [7]. In order to estimate the background picture based on the temporal 

fluctuation of each pixel in the buffer, no recursive methods must first buffer the previous N video frames. 

Buffering the frames takes up space in storage. Frame differencing, the median filter [8, 9], and the 

nonparametric background model [10] are all examples of popular no recursive methods. Since recursive 

methods iteratively update a single backdrop model based on each input frame, they eliminate the requirement 

to buffer a collection of frames for background estimate. Although recursive methods use less memory, input 

frames from the past may influence the present backdrop model. This means that any flaw in the base model 

will have more time to manifest itself. Recursive methods such as ap are often used. 

 

Figure 1: Schematic of the H.263 encoder. 

proximate median filter [11], Kalman filter [12, 13], and adaptive mixture of Gaussians [14, 15]. Block-

matching motion estimation algorithms widely used in video compression applications have also been used for 

moving object detection. The determined motion vectors can be used for object tracking by grouping or 

associating some of the motion vectors into a meaningful scene representation. Some real-time tracking methods 

based on blockmatching algorithms have been proposed [1, 16, 17].  

The H.263 encoder overview  

The H.263 video compression standard was defined by the ITU [18] for use in a range of low bit-rate video 

applications over wireless and public-switched telephone networks. A generic H.263/MPEG-4 encoder showing 

transform and predictive coding is depicted in Figure 1. The main operations that bring about compression 

include discrete cosine transform (DCT), inverse discrete cosine transform (IDCT), quantization (Q), inverse 

quantization (IQ), variable length coding (VLC), and motion estimation (ME). A compressed video sequence is 

made up of a series of INTRA- and INTER-frames. An INTRA-frame is used as a reference frame for INTER-

frame encoding. It is coded using the DCT, Q, and VLC. INTER-frames are coded using the ME, and built-on 

INTRA-frames (or previous INTERframes) with motion vectors. Thus, an INTER-frame is not viewable on its 

own. In situations where the video sequence features a scene change, motion vectors will not generate a valid 

image. Thus, to improve error resilience, H.263 coding standard calls for at least one INTRA-coded frame every 

132 frames [19] or when a scene change takes place. 

MULTIPROCESSOR SYSTEM  

The previous section described the implementation of the individual components that comprise the automated 

video surveillance application. In this section we discuss the integration of two heterogeneous processors, 

building of a simulator for the MPSoC system, synchronization mechanism adopted, and simulation of a system 

composed of these application-specific processors and their applications. 

Extensamodelling protocol  

The Extensa ISS is an instruction-cycle accurate instruction set simulation model which is appropriate for 

simulating and verifying the behaviour of a single Extensa processor connected to simple memories. The 

Extensamodelling protocol (XTMP) extends the ISS application programming interface (API) to allow for 

simulation of designs with multiple processors or custom hardware devices. XTMP models communication 

between cores and devices as transactions, not as signals, with a positive effect on the simulation speed and ease 

of development of the model, but it affects the accuracy of the developed model. The XTMP simulator runs 
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faster than a hardware description language (HDL) simulator as the simulator and device models written in C do 

not need to model every signal transition for every gate and register. 

System memory map  

The automated video surveillance application has two tasks that are executed on two processors, the object 

detection/tracking application runs on core 1 (called u1 s1) while the video encoding application runs on core 2 

(u1 s2). A shared memory module of 64 kB was created as data is shared between the processors. When an 

object has been detected by the object tracking processor, the raw input pixels need to be shared with the video 

encoding processor. In the system a single global address space does not exist; instead, two separate memory 

maps are established and each processor has its own address space. Each processor has its own private system 

ROM and RAM, and the processors share a common memory module which appears at different addresses of 

individual processors. The processors and memory modules are connected via an intermediary object called a 

connector using the XTMP connect() function. The connector is connected to the cores via the cores’ PIF, and 

allows multiple cores and multiple devices to be attached to it. It routes processor read/write transactions to 

memories and provides an address mapping capability. The XTMP multiAddressMapConnector has been used 

to define a processor-specific address space so that each processor can use the same address to access a different 

memory module as well as allowing each processor to use a different address to access a shared memory module 

RESULTS AND DISCUSSION 

 The cache explorer has been used to analyse different possible cache configurations and determine which of 

them is optimal for the application. The H.263 video encoder core was configured with a direct-mapped, 16 KB 

instruction cache with cache line size of 64 bytes and a 2-way set associative 32 KB data cache with cache line 

size of 64 bytes. Cache configuration for the object tracker is not as crucial as the video encoder is the limiting 

factor in terms of performance. Therefore, the object tracker was configured with 8 KB direct mapped 

instruction cache with line size of 64 bytes, and 8 KB 2-way set associative data cache with line size of 64 bytes. 

The software optimizations and addition of video compression-specific TIE instructions to the customized 

processor core resulted in performance improvement of 41.2 times over the original TMN encoder version 1.7. 

This improvement has allowed real-time H.263 video encoding of 

Table 1: Profile information of video encoder compressing QCIF video sequences with little (first three 

columns) and substantial (last three columns) motion (Cycles). 

 

15 fps QCIF and CIF size images requiring 49 and 205 million clock cycles, respectively. Table 4 shows the 

performance results for both the software optimized and TIE optimized encoders. The Extensa C and C++ 

compiler (XCC) provides better execution performance and smaller size of the compiled code when compared 

with the GCC compiler. Among the slowest operations in ANSI C are copying arrays of data. These are shown 

in Table 4 under the “Others” category. Further results which illustrate performance of the optimized processor 

for video encoding of some standard video sequences [22] are shown in Table 5, for QCIF video sequences, and 

in Table 6, for CIF video sequences. The results shown in Table 7 were obtained using the standalone Extensa 

ISS built for the object tracking processor. The video sequences with internal names kwbB, rheinhafen, taxi, 

bad, and dtneu-nebel were downloaded from [32] and resized to 352 × 288 using Virtual Dub version 1.65 [33]. 

Table 5 shows that 15 CIF resolution images can be processed in 128 million clock cycles for all video 

sequences tested, 

Table 2: Profile information of video encoder compressing CIF resolution sequences (MCycles). 
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Table 3: Profile information of object tracker processing 15 CIF resolution frames (MCycles) 

 

significantly less than the number of clock cycles required by the video encoder to encode 15 CIF resolution 

frames. The final processor core configurations of both the video encoder and the object tracker are shown in 

Table 8. The 200 MHz processor core configured for object tracking has lower gate count and power dissipation 

compared to the 205 MHz processor core. This is due to the V1620-8 DSP configured for the video encoder 

processor core, which added approximately 75.000 to the gate count and 34 mW to power dissipation. The 

power consumption is an estimation provided by Xtensa Xplorer tool. It is based on the synthesis results of 

placed and routed units from library of components used in Xtensa processor. An accurate estimation of power 

consumption should be done after the physical synthesis of the processor core and running the target application. 

More TIE instructions also had to be added to the video encoder application to achieve real-time performance of 

15 CIF frames per second. The video encoding core has been configured with larger instruction and data caches, 

thus explaining the big difference in area (including caches/local memories). 

 

CONCLUSIONS  

Using the Xtensa platform, a reactive real-time automated visual surveillance application was shown. Two 

processors are used to run the application's object tracking and video stream encoding subsystems, respectively. 

To achieve real-time QCIF and CIF encoding, the video stream encoding subsystem was implemented by 

optimizing a software H.263 video encoder running on the Xtensa flexible and extensible embedded CPU. The 

experimental findings reveal that the software and Xtensa-specific improvements result in 7.1 and 41.2 times the 

performance boost over the baseline, respectively.The blockmatching-based object tracker was successfully 

tested for a variety of items utilizing stationary camera video sequences. Some TIE instructions originally 

developed for the video compression application were repurposed to enable real-time tracking of in-motion 

objects. In the test video sequences, the object tracker takes 130 million clock cycles to analyze 15 CIF quality 

frames. The dual FIFO and shared memory between the two Xtensa cores allowed for the implementation of the 

automated video surveillance program. Tensilica's instruction-set simulator API was used to create a 

multiprocessor simulator software for simulating the automated video surveillance application on the system-on-

chip architecture.  
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